We show that uniqueness of the solution to the learning problem in the case of regression can be restored by appropriately restricting the space of the admissible solutions to sufficiently smooth functions. 并证明如何利用适当的控制平滑函数来反推回归式学习问题的解法的独特性。
The Shallow Learning Problem in Modern Distance Education and the Counter Strategy 远程学习中浅学习问题及解决策略探究
If not, do you think that such software can be created, or is this strictly an architecture or learning problem? 也就是说开发产品级别的软件是一个架构问题,还是一个学习某软件的问题?
The algorithm combines active learning, biased classification and incremental learning to model the small sample biased learning problem in relevance feedback process. 该算法将主动式学习、有偏分类和增量学习结合起来,对相关反馈过程中的小样本有偏学习问题进行建模。
Students'learning on paper textbook is ubiquitous. However, when will students encounter a learning problem? This is unpredictable. 学生阅读纸本的环境在时间、空间上都是无所不在的,因此,遭遇学习问题的时间点是无法预测的;
You are not stupid, you have a learning problem. ( 1) 你不笨,只是学习上有点问题。
The method applies binary algorithms to deal with multiclass learning problem by employing error correcting output coding. 这种方法采用纠错输出码将多类别问题转化为二类别问题逐个处理。
And classification is the basis of the common Machine Learning problem. 分类是许多机器学习问题解决的基础。
OBJECTIVES To investigate common behavioral problems and its states of learning problem children in Shenzhen. 目的探索深圳市学习问题儿童常见的问题行为及其特征,并与对照组儿童比较,为学习问题矫治体系的建立提供依据。
This paper presents a learning problem from positive examples based on multiple valued minimization paradigm. A new heuristic algorithm for the problem is given. 本文基于多值逻辑函数极小化提出一种正例学习问题,并对这一正例学习问题给出一个启发式学习算法。
SLT provides a powerful theory fundament to solve machine learning problem with small samples. 统计学习理论为人们系统地研究小样本情况下机器学习问题提供了有力的理论基础。
The center of every learning unit is learning activity and drived by the learning problem and task; 每个学习单元以学习活动为中心、以问题或任务为驱动;
In this paper, a sort of strongly constructive learning problem& ERP is defined; 定义了一类强构造学习问题ERP;
Setting of the fuzzy learning problem is brought forward; 提出了模糊学习问题的一般表示;
This paper introduces a kind of artificial intelligent system-generalized computing system constructed by means of generalized computing. including its mathematical description, implement problem and learning problem. 该文简要介绍运用广义计算技术而建立起来的一类人工智能系统&广义计算系统,包括广义计算系统的数学描述,广义计算系统的实现问题和学习问题。
Study of Multi-agent Learning Problem Based on Reinforcement Learning 基于强化学习算法的多智能体学习问题的研究
Learning problem is the key problem of artificial neural networks. 学习问题是人工神经网络研究的核心问题。
The paper describes algorithm of best state sequence in the decoding problem, one of three question ( the Evalua-tion problem; the decoding problem; the learning problem) of Hidden Markov Models, and discusses its application. 主要对隐马尔科夫模型中的三个问题(估计问题、译码问题、学习问题)中的译码问题作了研究,并对其应用进行了探讨。
In the experiment aspects, the results shows that this algorithm can deal with the unsupervised learning problem successfully. 实验结果表明,该算法能成功地解决很多非监督分类问题。
Learning problem, namely parameter estimation problem, is the core problem of HMM. 其中学习问题(也称参数估计问题)是核心问题。
It was easy to present learning problem and anxiety in PI group. PI组易出现学习问题和焦虑;
This partial order structure can be extended to any concept learning problem, and therefore, it plays an instructive role in all algorithms for concept learning. 这种偏序结构可以推广到任何概念学习的问题中,从而对整个概念学习的算法有着重要的指导意义。
Other researchers also proposed some methods to solve multi-instance learning problem. 国内外学者针对多示例学习的独特性质,提出了解决多示例学习问题的一些途径。
This is a typical multi-agent learning problem. 该问题是一个非常典型的具有较大规模状态空间的多Agent学习问题。
In machine learning problem settings, we generally assume pairwise relationships among the objects of our interest. 在机器学习的问题中,我们常常假设我们感兴趣的对象两两之间的具有某种关系。
Image retrieval is transform into a multiple-instance learning problem. 该方法将图像语义检索转化成一个多示例学习问题。
We have analyzed that these problems all correspond to the similarity estimation issue or semi-supervised learning problem, and thus they can be tackled in a multi-graph semi-supervised learning scheme. 本文通过分析,指出这些问题都可以归结为样本的相似性度量问题或者半监督学习问题,因此这四个问题的应对可以描述为一个多图半监督学习的问题。
Through designing and conducting the action research, we solve the learning problem of the left-behind children raised by our research partners, improve our research partners 'teaching conditions, and promote the professional development of the research partners. 通过行动研究的设计与实施,我们在一定程度上解决了研究伙伴提出的留守儿童学习问题,改善了研究伙伴的教学生活,并促进了研究伙伴的专业发展。
Classical rough set model to solve relatively good data symbols of the machine learning problem, in particular, feature selection data symbol, attribute reduction and rule induction problem. 经典粗糙集模型比较好的解决了符号型数据的机器学习问题,尤其是符号数据的特征选择、属性约简和规则归纳问题。